240. The Dimroth Rearrangement. Part II. ${ }^{1}$ Kinetic Studies.

By D. D. Perrin.
The kinetics of this rearrangement (in which an alkyl group migrates from a nuclear to an extranuclear nitrogen) have been studied by using a rapid spectrophotometric method. Neutral molecules of 2 -amino-3,4-dihydro-3-methyl-4-oxopteridine ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$) and its 6,7-dimethyl derivative are stable but, in alkaline solutions, their anions rearrange by two well-defined consecutive reactions to yield the corresponding 4-hydroxy-2-methylaminopteridines (II). The second of these reactions, but not the first, appears to be catalysed by hydroxyl ion. Similarly, the neutral molecule of 5 -bromo-1,2-dihydro-2-imino-1-methylpyrimidine (III) is converted in two steps into 5 -bromo-2-methylaminopyrimidine (IV); neither of these reactions is catalysed by hydroxyl ion. The instability of the anions of the aminodi-hydro-oxopteridines is attributed to the conversion of the 2 -amino- into a 2 -imino-group, followed by fission of the pyrimidine nucleus.

The migration of methyl groups from nuclear to extranuclear nitrogen atoms in the pyrimidine series has been shown, by labelling with nitrogen-15, to involve ring-fission, followed by rotation and recyclisation. ${ }^{2}$ A similar reaction sequence, also with cleavage of a pyrimidine ring, was postulated by Taylor and Loeffler ${ }^{3}$ for migrations of this type in

1 Part I, Brown and Harper, preceding paper.
${ }^{2}$ Brown, Nature, 1961, 189, 828.
${ }^{3}$ Taylor and Loeffler, J. Amer. Chem. Soc., 1960, 82, 3147.
the heterocyclic compounds examined by them, all of which comprised condensed pyrimidine systems. Thus, 2 -amino- 3,4 -dihydro- $3,6,7$-trimethyl-4-oxopteridine ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$) rearranges in dilute alkali to form 4-hydroxy-6,7-dimethyl-2-methylaminopteridine (II; R $=\mathrm{Me}$). ${ }^{4}$

A rapid-flow spectrophotometric study has now been made of the rearrangements, in alkaline solution, of the compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$) and ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$) to the corresponding 4-hydroxy-2-methylaminopteridines (II), and of 5-bromo-1,2-dihydro-2-imino-1-methylpyrimidine (III) to 5 -bromo-2-methylaminopyrimidine (IV). In the three examples studied, the reaction proceeds more or less quantitatively, and it has been used in organic synthesis, where yields of the purified rearranged material have exceeded $50 \% 0^{\mathbf{1 , 4 , 5}}$ Evidence, presented below, indicates that the transformation of compound (I) into compound (II) can be represented by the reaction sequence,

where A is the anion of (I) and C is the anion of (II). It is possible that k_{1} and k_{2} may be reversible to a small extent but this was not demonstrated experimentally. The intermediate, B, has not been identified but (by analogy with the reversible ring-fission of the cation of pteridine to give 2 -aminomethyleneamino- 3 -formylpyrazine ${ }^{6}$) it is possibly the anion of 2-methylguanidinopyrazine-3-carboxylic acid, which might be expected to result from hydrolytic fission of A across the 3,4-double bond.

2 -Amino-3,4-dihydro-3-methyl-4-oxopteridine $(\mathrm{I} ; \quad \mathrm{R}=\mathrm{H})$.-The reaction $\mathrm{B} \rightarrow \mathrm{C}$. Neutral and acid solutions of the substance ($I ; R=H$) are stable. However, when such a neutral solution is added to 2 m -sodium hydroxide at 20° the ultraviolet and visible spectra change continuously, an initial rapid change during about two minutes being followed by a slower one taking upwards of half an hour. Thus, the optical density of the solution at 365 and $390 \mathrm{~m} \mu$ passes through a minimum within two minutes of mixing and, from about three minutes after mixing (but not before that), the family of spectral curves obtained by rapid and repeated scanning have well-defined isosbestic points at $242 \cdot 5,269,338$, and $397 \mathrm{~m} \mu$. The spectrum taken 27 min . after mixing (Fig. 1) was close to that of the anion of an authentic specimen of the compound (II; $\mathrm{R}=\mathrm{H}$) which gave $\lambda_{\text {max. }} 260$ and $367 \mathrm{~m} \mu$ $(\log \varepsilon=4.299$ and 3.829$)$, $\lambda_{\text {min. }} 300 \mathrm{~m} \mu$.

The existence of isosbestic points suggested that only two light-absorbing species, one of which, B , was changing into the other, C , were present in the solutions after the first few minutes, so that the kinetics of the reaction could be studied by measuring, at suitable wavelengths, the change of optical density with time. Results in Figs. 2 and 3 show that the plot of $\log \left(D-D_{\infty}\right) /\left(D_{0}-D_{\infty}\right)$ against time is linear, as required for a first-order rate equation, and that the reaction is catalysed by hydroxyl ions.

The reaction $\mathrm{A} \longrightarrow \mathrm{B}$. The spectrophotometric study of this reaction is complicated by the further conversion of B into C so that, in general, the absorption due to pure B cannot be measured. This prevents the direct evaluation of $\left(D-D_{\infty}\right)$ for the reaction $\mathrm{A} \rightarrow \mathrm{B}$. This difficulty can be overcome by working at a wavelength where B and C are isosbestic, so that D rapidly reaches the desired and constant value. Alternatively,

[^0]

Fig. 1. A, Absorption spectrum taken within two seconds of mixing solutions $10^{-4} \mathrm{M}$ in 2 -amino-3,4-dihydro- 3 -methyl-4-oxopteridine and $2 \mathrm{M}-\mathrm{KOH}$, at 20°. Con-tinuous-flow method. C, Absorption spectrum after the mixed solution had been left for 27 minutes.

Fig. 2. Plot of $\log \left(D-D_{\infty}\right) /\left(D_{0}-D_{\infty}\right)$ against time, for the reaction $\mathrm{B} \longrightarrow \mathrm{C}$ in alkaline solutions of 2 -amino-3,4-dihydro-3-methyl4 -oxopteridine at 20°. Experimental details are summarised in Table 1.

Fig. 3. Dependence of the first-order velocity constant, k_{2}, for the reaction $B \rightarrow C$ in alkaline solutions of 2-amino-3,4-dihydro-3-methyl-4-oxopteridine at 20°, on the concentration of sodium hydroxide.

Fig. 4. Plot of $\log \left(D-D_{\infty}\right) /\left(D_{0}-D_{\infty}\right)$ at $430 \mathrm{~m} \mu$ against time, for the reaction $A \longrightarrow B$ in alkaline solutions of 2 -amino-3,4-dihydro-3-methyl-4-oxopteridine at 20°.
Experimental details are summarised in Table 1.

Key as Fig. 2.
back-extrapolation of the plot of $\log \left(D-D_{\infty}\right)$ versus time for the $\mathrm{B} \longrightarrow \mathrm{C}$ reaction can be used to afford the optical density of pure B, which is the D_{∞} value for the reaction $\mathrm{A} \rightarrow \mathrm{B}$. Clearly, this back-extrapolation must not be made to the time when the solutions were mixed (and only A was present) but to some subsequent time. In the present work this time is assumed equal to t_{s} for the conversion of A into B , and it is obtained by an iterative process. Although this procedure is more tedious than the isosbestic method, it has the advantage that both k_{1} and k_{2} are obtained under the same conditions and in the same experiment.

Results in Fig. 4 suggest that the reaction is first-order and that the rate constant increases with the concentration of sodium hydroxide present. However, because reaction proceeds through the anion of compound (I), but not through the neutral molecule (with which it is in dynamic equilibrium), observed rate constants must be multiplied by the factor, ([A] + [I])/[A], if true rate constants are to be obtained: this factor is readily calculated from the identity,

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log ([\mathrm{A}] /[\mathrm{I}]) .
$$

Values of k_{1} at 20° (corrected by using $\mathrm{p} K_{\mathrm{a}}=13 \cdot 41$), corresponding values of k_{2}, and other relevant data, are summarised in Table 1.

Table 1.
First-order rate constants for the rearrangement of (I; R=H) and ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$) in alkali at 20°.

The reaction $B \longrightarrow C$ appears to be strongly base-catalysed. The relation,

$$
k_{2}=0 \cdot 116\left[\mathrm{OH}^{-}\right]\left(\mathrm{min}^{-1}\right)
$$

reproduces within ± 0.007 all but the two highest values of k_{2} given in Table 1.
The corresponding least-squares equation for k_{1},

$$
k_{1}=0 \cdot 88+1 \cdot 23\left[\mathrm{OH}^{-}\right]\left(\min .^{-1}\right)
$$

fits the results within $\pm 0 \cdot 18$ but the implied, weak catalysis by hydroxyl ion is dubious and is probably only an expression for the primary salt effect when the ionic strength
increases from 0.18 to $3 \cdot 66$: a comparable increase is observed when sodium nitrate is added to the solution.

2-Amino-3,4-dihydro-3,6,7-trimethyl-4-oxopteridine ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$).-In alkaline solutions this compound behaves in a similar manner to its parent ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$), but, owing in part to its higher $\mathrm{p} K_{\mathrm{a}}(\mathbf{1 4} \cdot \mathbf{2 0})$ much higher concentrations of sodium hydroxide are needed if the reactions are to proceed rapidly. The spectra of the corresponding species A (max. at $289 \mathrm{~m} \mu$) and C (max. at 258 and $361 \mathrm{~m} \mu$) are very similar to those shown in Fig. I, and B and C have isosbestic points at 275 and $307 \mathrm{~m} \mu$. In $3 \cdot 66 \mathrm{~m}$-sodium hydroxide at 20°, first-order rate constants for the consecutive reactions were $k_{1}=1.22$ and $k_{2}=$ $0.044 \mathrm{~min} .^{-1}$, representing times of half-reaction of 47 sec . and 16 min ., respectively: for the compound ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$) under the same conditions the corresponding values of t_{z} are 11 sec . and 81 sec .

5-Bromo-2-imino-1-methylpyrimidine (III).—When a $5 \times 10^{-5} \mathrm{M}$-solution of the (stable) cation of (III) is made alkaline, two consecutive reactions can readily be observed: the

Fig. 5. Absorption spectrum taken after mixing solutions $5 \times 10^{-5} \mathrm{M}$ in 5-bromo-2-imino-1-methylpyrimidine and $0.05 \mathrm{M}-\mathrm{NaOH}$. at 20°; A, within 2 sec .; B, after 9 min .; C, after $2 \frac{1}{2} \mathrm{hr}$.
optical density of the solution at $326 \mathrm{~m} \mu$ increases from an initial value of $D_{1 \mathrm{~cm} .}=0.07$ to a maximum of 1.44 and then, with time, falls almost to zero. Relevant spectra are shown in Fig. 5. The final solution contains 5 -bromo-2-methylaminopyrimidine ($\lambda_{\text {max }}$ $247,328 \mathrm{~m} \mu ; \log \varepsilon, 4 \cdot 286,3 \cdot 357$) as the main organic species ${ }^{1}$ but Fig. 5 shows that an unidentified substance with $\lambda_{\text {max. }}$ at $c a .280 \mathrm{~m} \mu$ is also present. This material is thought
(V)
 to result from a slow hydrolytic deamination of the intermediate formed during the rearrangement. Thus, a substance with an absorption maximum at $278 \mathrm{~m} \mu$ is slowly formed in alkaline solutions of 5 -bromo-1,2-dihydro-1-methyl-2-methyliminopyrimidine (V) which readily ringopens but cannot undergo the rearrangement. Formation of this substance from the neutral molecule (V) is unlikely because, under these conditions, the latter has a half-life of only about 6 minutes at 20°. A similar peak appears when 1-alkyl-1,2-dihydro-2-oxopyrimidines are left in alkaline solution. ${ }^{1}$

By representing the reaction sequence by

$$
\mathrm{D} \xrightarrow{k_{1}} \mathrm{E} \xrightarrow{k_{2}} \mathrm{~F}
$$

where D is the neutral molecule (III) and F is (mainly) 5-bromo-2-methylaminopyrimidine, first-order rate constants, k_{1} and k_{2}, have been evaluated from the time-dependence of optical density changes. Results are summarised in Table 2.

Table 2.
First-order rate constants for the rearrangement of compound (III) ${ }^{\boldsymbol{a}}$ in aqueous alkali.

	Analyt. λ, $(\mathrm{m} \mu)$				Temp.

Neither reaction is base-catalysed. A comparable value of k_{1} is also obtained at lower pH values when the observed rates are corrected to allow for the presence of part of compound (III) as the (non-reacting) cation.

5-Bromo-1,2-dihydro-1-methyl-2-methyliminopyrimidine (V).—In its initial spectral changes, (V) parallels the iminopyrimidine (III). The absorption maximum falls steadily to less than half its initial value, there is an isosbestic point at $280 \mathrm{~m} \mu$, and a new peak appears at $322 \mathrm{~m} \mu$ and increases to a value of $\log \varepsilon$ about 4.50 . Rate constants for this reaction in 0.0457 m-sodium hydroxide are $k_{1}=0.110 \mathrm{~min} .^{-1}$ at 20° and $0.301 \mathrm{~min} .^{-1}$ at 30° (analyt. $\lambda, 322 \mathrm{~m} \mu$). Thereafter, the spectrum changes very slowly, with steady diminution of the peak at $322 \mathrm{~m} \mu$ and the emergence of a new peak at $278 \mathrm{~m} \mu: t_{d}$ for this reaction is about 170 minutes at 30°.

Discussion

Although compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$) and ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$) could, conceivably, form anions by the hydration of the oxo-group to give a gem-diol, with subsequent loss of a proton, such a reaction is unlikely because of the absence from the molecule of strongly electronwithdrawing substituents. Instead, it is probable that anion formation arises by the loss of a proton from the 2 -amino-group to form the imine (VI) which then undergoes ringfission. The structure (VI) contains an uncharged imino-group adjacent to a saturated tertiary nitrogen atom. This sequence occurs in all compounds known to undergo the Dimroth rearrangement and it appears to confer an intrinsic instability on the molecule. Stability is restored if the imine is converted into its cation or, in the oxopteridines, into an amino-group.

(VI)

(VII)

NHMe
(V1II)
Little is known about the mechanisms involved in the ring-opening and ring-closing steps of the rearrangement. Taylor and Loeffler ${ }^{3}$ suggested that base-catalysis occurred, with an initial nucleophilic attack by hydroxyl ion or other base at a pyrimidine $\mathrm{C}=\mathrm{N}$ bond, with subsequent cleavage of the ring. The present results do not support this hypothesis. On the contrary, the absence of hydroxyl-ion catalysis of k_{1}, and the structures of the rearranged products, are consistent with simple heterolytic fission of the $3,4 \mathrm{C}-\mathrm{N}$ bond in compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$) and ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$) and the $1,6 \mathrm{C}-\mathrm{N}$ bond in compound (III). This would probably be followed by solvent attack to give the intermediates (VII) and (VIII), derived from (I) and (III), respectively, which would also be expected on Taylor and Loeffler's reaction scheme.
$\mathrm{T} \mathrm{T}^{*}$

Reversal of these reactions, except that water-elimination would involve the imine hydrogen, would then lead to the final products (II) and (IV) in which there is at least partial aromatic stabilisation.

The strong electron-withdrawing tendencies of the formyl group, the bromine atom, and the ethylenic double-bond might be expected to render the substituted guanidine (VIII) a much weaker base than the starting material (III), so that, under the experimental conditions, (VIII) would be present in solution almost entirely as the neutral molecule. If the limiting factor in the reaction, $\mathrm{E} \longrightarrow \mathrm{F}$, were the re-formation of the 1,6 -bond in the pyrimidine ring the observed rate constant, k_{2}, would be independent of pH , as found. On the other hand, zwitterion formation would make the guanidinopyrazinecarboxylic acid (VII) a strong base so that, at pH values below its $\mathrm{p} K_{\mathrm{a}}$, the apparent value for k_{2} would vary with the ratio of uncharged base to total concentration; this could explain the dependence of k_{2} on hydroxyl-ion concentration.

From measurements at 20° and 30°, Arrhenius activation energies, E_{a}, for the reaction, $\mathrm{D} \rightarrow \mathrm{E}$, have been estimated to be 15.1 and 18.0 kcal . for 5 -bromo-1,2-dihydro-2-imino-1-methylpyrimidine (III) and 5-bromo-1,2-dihydro-1-methyl-2-methyliminopyrimidine (V), respectively. For compound (III) and the reaction $\mathrm{E} \rightarrow \mathrm{F}$ the corresponding activation energy was 18.2 kcal. That E_{a} for $\mathrm{D} \longrightarrow \mathrm{E}$ should be greater for substance (V) than for substance (III) is as expected: the former is the stronger base ($\mathrm{p} K_{\mathrm{a}} 10 \cdot 67$ as against 9.95), indicating greater electron-availability, and, hence, difficulty of bond-breakage, in the molecule. This is also true for the observed reaction rate, k_{1}, at 20°; compound (III) ring-opens 4.4 times as quickly as (V). For the same reason the absolute rates are much greater than for related pyrimidine derivatives that are stronger bases. ${ }^{1}$

Experimental

Materials.-The pteridine ${ }^{4,7}$ and pyrimidine ${ }^{1}$ derivatives used in this study were generously provided by Dr. D. J. Brown.

Methods.-Ultraviolet and visible spectra were recorded on a Shimadzu model RS 27 recording spectrophotometer, into the cell compartment of which was fitted a thermostatted $1-\mathrm{cm}$. cell attached to a modified Chance rapid-reaction apparatus. ${ }^{8}$ The apparatus was used both for stopped-flow and for continuous-flow measurements. Sodium hydroxide concentrations at 20° were converted into pH values by taking $\mathrm{p} K_{\mathrm{w}}=\mathbf{1 4} \cdot 17$ and using the activity

Spectrophotometric $\mathrm{p} K_{\mathrm{a}}$ values were determined by measuring the initial optical densities of freshly mixed dilute solutions of the pteridine or pyrimidine derivative and carbonate-free sodium hydroxide. For compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$) and ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$), where the spectrum of the fully-formed anion could not be obtained, an extrapolation method was used, K_{a} being given by the slope of the plot of $\left(D_{\mathrm{I}}-D\right)\left[\mathrm{H}^{+}\right]$versus D. They are probably correct within ± 0.04 logarithm unit.

Department of Medical Chemistry, Institute of Advanced Studies, Australian National University,

Canberra, A.C.T., Australia.
[Received, August 8th, 1962.]
7 Brown and Jacobsen, J., 1961, 4413.
8 Inoue and Perrin, J. Phys. Chem., 1962, 66, 1689.
${ }^{9}$ Akerlof and Kegeles, J. Amer. Chem. Soc., 1940, 62, 620.

[^0]: ${ }^{4}$ Curran and Angier, J. Amer. Chem. Soc., 1958, 80, 6095.
 ${ }^{5}$ Pfleiderer, Liedek, Lohrmann, and Rukwied, Chem. Ber. 1960, 93, 2015.
 ${ }^{6}$ Perrin, $J ., 1962,645$.

